The Race for Pure Fusion Power


– A preleminary business plan for building simple fusion energy plants and space ships

If You are interested in pure fusion detonations for civilian energy provision purposes You may be right on my blog. I like to write about technology, that has generally the power to be bad in the wrong hands and to be good in the right hands. I write about ethics and theology, philosophy and new Stellar Ecology a generalization of planetary ecology that gives mankind a very simple but also very beautiful sense in the universe. I write about interstellar travel and the preconditions for that. Mostly I write in German – just because it is much easier to me. In this article I will write about the organizational problems and the main development risks of a pure fusion energy development program.




Why Mankind must not fear the Pure Fusion Bomb


A Science Fiction Story of Today

Along with the sun thermonuclear detonators are the only way to produce relevant amounts of fusion energy. All other methods ever tested – if they provide fusion energy at all – consume much more energy for igniting the fusion reaction than they release. So, if mankind plans to use fusion energy for civilian purposes within the next decades, it has eventually to accept, that there is only one foreseeable, realistic and practical way: using smaller hydrogen detonators in power plants, within huge underground vessels, where fusion explosions heat up a medium – similar to the explosions in a motorcar [1]. There is one big problem: all of todays hydrogen fusion detonators are ignited by plutonium-239 fission bombs, the so called primaries. These fission bombs produce highly radioactive, lethal fission products like iodine-131, strontium-90, caesium-137 [2]. It is exactly the same problem as with our fission reactors. The fission products contaminate humans, animals and plants and cause radiation sickness and cancer. This is why I have started to write about thermonuclear fusion energy plants on the moon or nuclear pulse space ships with home bases on the lunar surface. You can read about it here [3][4] if You are interested in that topic. With this kind of machines, based far away from earth’s biosphere, it would be possible for mankind to use fusion energy by todays means without any potential side effect for earths environment and human society. But can a fusion detonator only be ignited by a fission bomb? Is there another non-nuclear way of ignition? Is it possible to build a 100% clean detonator, the pure fusion bomb?



The Fusion Steam Machine


A Fusion Reactor for Today

In this article I will present a nuclear fusion power plant which is instantly buildable with todays technology, which is much safer than any of todays working nuclear power reactors, which provides enough hot steam for electric power within the GW range, which provides at least 95% fusion energy, which has a 7.5 times higher fuel efficiency than todays fission reactors and consumes totally at least less than 1/150 of natural uranium than nuclear energy production today, which produces no nuclear waste to be removed, which uses raw natural uranium-238 and ordinary ocean water as basic materials for energy production, which breedes and produces it own nuclear fission and fusion fuels within the plant, which costs less than any of todays nuclear energy plants, which can provide electric energy for less than 5 Cent/kWh for the end consumer.



The Nomad Fusion Reactor


A Revised Version of the Thermonuclear Fusion Steam Machine

This article presents the proposal for new fusion power plants made exclusive of existing technology, how they work and how they are built in detail and that they work. The latter is proven by means of basically thermodynamic considerations. Also, the text proves the safety and ecologic cleanness of the plants. It shows in detail how to build them economically, of course by apparently unusual and violent means, and it takes some getting used to. The electric energy they deliver on Earth will be cheaper than any form of electric energy before, although they are built on the Moon. In this case it is because they are built on the Moon. Fusion energy is available.

Fusion Energy is available for about 60 years now since the first thermonuclear bomb was ignited on Nov 1, 1952. But where are the power plants? And which size will they have? Notice the little man standing in front of ITER. Where’s the steam turbine and the electric power generator in the drawing of DEMO? Fig: [2]


The Four Stroke Thermonuclear Motor


– proposal for a fusion energy plant of GW size buildable at present: a fusion bomb steam machine

[This is the older and original version of the thermonuclear fusion steam machine. The article describes in detail, how I got the idea, and why I was sure, that it could work. But there was still a thermodynamic trap in the approach, and after some years the plant would have suffered the heat death. I did a change in the geometry and size to avoid this problem. Please refer to the newest version: „The Nomad Fusion Reactor“]

Scientists all over the world, experts for Nuclear Physics and Plasma Physics, are working today on Billion Dollars expensive experimental devices [1][2][3][3a] to make Fusion Energy available to mankind. They are developing their giant plants for about 40 years [3] now, but they are not much further (in producing energy) than hobbyists that are building small electrodynamic fusion energy devices in their cellars for a few thousand dollars [4]. Both, the big and the small devices, turn out a nuclear fusion reaction, and both have the same problem: they don’t produce energy. Of course there is energy from the fusion reaction, but in both cases it is much less than the fusion reactor consumes itself. So the scientific reports periodically released are very depressive to read. There is also an illustrious scientific work, a dissertation, that circulates for 17 years, which calculates, that both kinds – the big and the small – of continuous fusion reactors will never work, both because of the same reasons [5].

Fusion Energy is available for about 60 years now since the first thermonuclear bomb was ignited on Nov 1, 1952. But where are the power plants? And which size will they have? Notice the little man standing in front of ITER. Where’s the steam turbine and the electric power generator in the drawing of DEMO? Fig: [5a]